Figures - uploaded by Alaa Sayed Abou-Elhamd

Author content

All figure content in this area was uploaded by Alaa Sayed Abou-Elhamd

Content may be subject to copyright.

ResearchGate Logo

Discover the world's research

  • 20+ million members
  • 135+ million publications
  • 700k+ research projects

Join for free

Fundamentals of

Histology

Part I

Mohammad R. Fath-Elbab

Alaa Sayed Abou-Elhamd

i

Histology

Part I

Mohammad R. Fath-Elbab

Professor of Histology.

Faculty of Veterinary Medicine.

Assiut University.

Alaa S. Abou-Elhamd

Lecturer of Histology.

Faculty of Veterinary Medicine.

Assiut University.

ii

Contents

1-THE CELL …………………………………………………………………..1

The structure of the cell 1 The cell organelles 2

The cell membrane 1 The cell inclusions 6

The cytoplasm 2 The nucleus 7

THE EPITHELIAL TISSUE…………………………………………………9

I- Epithelial membranes 9 II- Glands 12

Types 9 Modifications in cell surface 14

A) Simple epithelium 9 Modifications in cell constituents 16

B) Stratified epithelium 10

THE CONNECTIVE TISSUE……………………………………………….18

Structure 18 B) The connective tissue fibers 21

A) The cellular elements 18 C) The matrix 21

Types of connective tissue 21

I- Connective tissue proper 21

1- Loose connective tissue. 21 2- Dense fibrous connective tissue 22

II- Cartilage 23

1- Hyaline cartilage 24 2- Elastic fibrocartilage 24

3- White fibrocartilage 25

III- Bone 25

A) Bone cells 25 B) Matrix 26

Types of bones 26

1. Cancellous bone (spongy bone) 26 2. Compact bone 26

Ossification (development of bone) 27

1- Intramembranous ossification. 27 2- Intracartilagenous ossification 27

BLOOD…………………………………...……………………………………29

I- Erythrocytes 29

II- Leukocytes (white blood cells) 29

iii

Granular leukocytes 29 Neutrophil leukocytes 29

Eosinophil leukocytes. 30 Basophil leukocytes 30

Agranular leukocytes 30

A) Lymphocytes. 30 B) Monocytes 30

III- Blood platelets 31

THE MUSCULAR TISSUE………….………………………………………32

1. The smooth muscle 32 3- The cardiac musc 34

2. The skeletal muscle 33

THE NERVOUS TISSUE…………………………………………………….35

I- Nerve cells (Neurons) 35

A) The cell body 35 B) The cell processes 35

Types of nerve cells 36

II- Nerve fibers 36 Type of nerve fibers 36

Synapse (s) 37 Nerve trunk 37

Ganglia 38

Sympathetic ganglion 38 Spinal gangli 38

III- NeurogIia 39

A- Neuroglia proper 39

1-Astrocytes 39 2- Oligodendrocytes 40

3-Microglia 40

B- Other types of neuroglia 40

References……………………………………………………………………41

THE CELL

The cell is the structural unit of

the living organism. Organized

animals possess millions of cells

tissues organs systems.

The cells differ into:

Shape:

Flat (Fig. 1a)- spindle (Fig. 1b)-

cuboidal (Fig. 1c)- columnar (Fig.

1d) - triangular (Fig. 1 e) - spherical

(Fig. 1f)- irregular (star- shape, Fig.

1.g)- flagellated (Fig. 1h).

Size:

Small - large.

Fig.1: The morphology of a cell varies

according to its function.

The structure of the cell:

The cell (Fig. 2) consists of:

I. Cell membrane.

II. Cytoplasm.

III. Nucleus.

Fig: 2 Structure of the cell. 1. The nucleus, 2.

The nucleolus, 3. The nuclear membrane,

showing nuclear pores, 4. Rough endoplasmic

reticulum, 5. Smooth endoplasmic reticulum.,

6. Golgi apparatus, 7. Centrioles, 8. Secretory

granule, 9. Mitochondrion, 10. Phagocytosis,

11. Basal invagination, 12. Ribosome, 13. Cell

membrane, 14. Endocytosis, 15. Microvilli, 16.

Exocytosis, 17. Zonula occludens, 18. Zonula

adherens, 19. Desmosome, 20.

Hemidesmosome, 21. Basal lamina, 22.

Residual body, 23. Glycogen, 24.Microtubule.

I. The cell membrane

(Plasmalemma):

* L/M: Can not be seen.

* E/M: Unit membrane.

75-100 A° in thickness.

Trilaminar membrane (Fig. 3& 4)

consists of:

i) Osmiophilic layer: Electron dense.

ii) Osmiophobic layer: Less electron

dense.

iii) Osmiophilic layer: Electron

dense.

Fig. 3: The plasmalemma of two neighbouring

cells (arrows). Each is formed of trilaminar

membrane consisting of two dark lines

separated by an intermediate light zone.

Fig. 4: A. The ultrastructure of the cell

membrane: 1 + 2 - two electron dense

osmiophilic layers. 3 - A less electron dense

osmiophobic layer. B. The molecular structure

of the cell membrane: 1. Bimolecular lipid

layer. 2. Hydrophobic (nonpolar) ends. 3.

Hydrophilic (polar) ends. 4. Protein molecules.

5. Carbohydrate chains. 6. Cholestrol

molecules.

II- The cytoplasm:

Contains cell organelles and cell

inclusions.

A) The cell organelles:

Living materials.

Consist of:

i) Membranous cell organelles.

ii) Non-membranous cell organelles.

i) The membranous cell organelles:

1. Mitochondria:

* They are also called:

Power - house of the cell.

Energy - producing center.

Cell - respiration center.

* L/M: Appear as black filaments and

spheres when stained with iron-alum

haematoxylin or acidophilic with

trichrome (Fig. 5).

Fig. 5: The salivary duct, showing mitochondria

(acidophilic basal striation, arrows), trichrome

stain.

* E/M: Tubules (Fig. 6), each

consists of:

1. Outer membrane: smooth.

2. Inner membrane: folded

(cristae).

3. Outer chamber.

4. Inner chamber = Matrix:

Consists of:

Oxidative enzymes - DNA - RNA -

Granules.

Found into:

Muscle fibers.

Heart.

Liver.

Kidney tubules.

Sperms.

Fig. 6: The mitochondrion: 1. Outer membrane.

2. Inner membrane. 3. Cristae. 4. Inner

chamber. 5. Outer chamber.

2. Endoplasmic reticulum (ER):

* Types:

a) Rough endoplasmic reticulum

(rER):

* L/M: Basophilia of the cytoplasm

(Fig. 7).

* E/M: Irregularly branched

membranous tubules (CISTERNAE),

covered with fixed ribosomes (Fig.

8).

Found into:

Pancreas - Nerve cells - Endocrines -

Plasma cells.

Fig. 7: Serous acinus, showing basal basophilia

(rER), H & E stain.

Fig. 8: Rough endoplasmic reticulum (asterisks)

into a pancreatic acinar cell

b) Smooth endoplasmic reticulum

(sER)

* L/M: Cannot be seen.

* E/M: Irregular branched

membranous tubules (CISTERNAE)

with no ribosomes (Fig. 9).

Found into:

Testis - Skeletal muscles fibers -

Heart.

Fig. 9: Smooth endoplasmic reticulum into a

liver cell (Arrows).

3. Golgi apparatus:

* L/M: Appears as clear unstained

area near the nucleus (negative Golgi

image) when stained with H&E.

Apears as dark brown filaments and

granules when stained with silver

impregnation or Osmic acid (Fig.

10).

* E/M:

A- Membranous saccules (STACKS),

Fig. 11, each has:

i) Convex surface: immature

(forming) face.

ii) Concave surface: mature

(secretory) face.

B- Transfer vesicles.

C- Secretory vesicles.

Found into:

Pancreas - Liver - Nerve cells.

Fig. 10: A nerve cell, showing Golgi apparatus

(arrowheads) surrounding the nucleus (arrow),

silver impregnation.

Fig. 11: The Golgi apparatus. 1. The nuclear

membrane. 2. Rough endoplasmic reticulum. 3.

Transfer vesicles. 4. Forming face of Golgi

apparatus. 5. Secretory face of Golgi apparatus.

6. Secretory vesicle.

4. Lysosomes:

* L/M: Histochemically (Acid

phosphatase reaction).

* E/M: Membranous vesicles

containing lytic enzymes (Fig. 12).

Types:

a) Primary lysosomes:

Fresh vesicles.

b) Secondary lysosomes:

Primary vesicles fused to phagocytic

vesicles.

Found into:

Macrophages - Neutrophil leukocytes

- Monocytes.

Fig. 12: Lysosomes into the adrenal cortex

(Arrows).

5. Peroxisomes = Microbodies:

* L/M: Can not be seen.

* E/M: Membranous spheres (Fig.

13) containing enzymes e.g. catalase.

Found into:

Liver cells.

Fig. 13: Peroxisomes (Microbodies) into a liver

cell.

ii) The non-membranous cell

organelles:

1. Ribosomes:

* L/M: Cytoplasmic basophilia.

* E/M: Granules of RNA. (large

subunit + small subunit).

Types:

i) Monoribosomes: single.

ii) Polyribosomes: groups.

Found into: Pancreas - Endocrines -

Plasma cell.

2. Centrioles:

* L/M: Two spherical bodies.

* E/M: Two hollow cylinders

perpendicular on each other.

The wall of each cylinder consists of

9 triplets of microtubules (Fig. 14&

15).

Found into:

Ciliated cells, Sperms and Epidermis

(skin).

Fig. 14: The cytoplasmic microtubule and

centriole. A- C.S. of microtubule: 1.

Protofilaments (n=13). B-L.S. of centriole: 1 +

2 + 3 = Microtubular triplets. 4- Protein links.

Fig. 15: Centriole into a pancreatic acinar cell.

(Transverse section).

3. Cytoskeleton:

* L/M: Could not be seen.

* E/M: Consists of:

i) Microfilaments (Fig. 16): Actin -

myocin (sk. muscles).

Fig. 16: Myofilaments (L.S.) into a skeletal

muscle fiber

ii) Microtubules: 13 protofilaments

(Cilia).

iii) Intermediate filaments:

(Absorptive cells).

iv) Microtrabeculae:

Connect microfilaments and

microtubules with the cell organelles.

B) The cell inclusions

(Paraplasma):

Non-living materials.

1. Stored food:

a) Carbohydrates = glycogen (Best's

carmine Red). (PAS purple,

Fig. 17).

E/M: rosette- shape particles (Fig.

18).

Fig. 17: Glycogen granules into the liver cells,

PAS (asterisks).

Fig. 18: Glycogen particles into a hepatic cell

(E/M). Notice the rosette- shape particles of

glycogen (alpha- particles, arrows).

b) Lipids = Fat (Sudan black

black), (Fig. 19).

Fig. 19: Lipid droplets (arrows) into a Sertoli

cell (E/M).

c) Proteins = (Bromophenol blue

blue)

2. Secretory granules:

Zymogen granules (H & E Red,

Figs. 7& 20).

Fig. 20: Secretory granules into the pancreatic

acinar cells (asterisks), Azan stain.

3. Pigments:

i) Exogenous = Carotin - dust -

lipochrome.

ii) Endogenous = Haemoglobin

melanin (Fig. 21).

Fig. 21: Melanin pigments (arrows) into a

pigment cell from the iris (E/M).

III- The nucleus:

Shape = spherical - oval - crescent -

segmented (lobulated).

Size = small - large.

Structure:

1. Nuclear membrane:

Double unit membrane (outer

inner (Fig. 22).

• Perinuclear space.

• Nuclear pores.

Fig. 22: A nuclear membrane (arrows) into an

erythroblast

2. Chromatin:

i) Euchromatin: extended (active).

ii) Heterochromatin: condensed

(inactive, Fig. 23).

Sex chromatin = condensed x-

chromosomes (in females):

* Drum-stick (in neutrophil

leukocytes, Fig. 24).

* Small dense granules adhering to

the nuclear membrane (in oral

epithelium).

Fig. 23: Acinar cell from the pancreas. Notice

the nuclear structure. Nucleolus. Nuclear

membrane (arrows). Nuclear pores

(arrowheads). Chromatin.

Fig. 24: The sex chromatin in a

polymorphonuclear leukocyte (female). It has a

drum-stick shape (arrowhead).

3. Nucleolus:

(Fig. 23)

i) Pars granulosa (RNA).

ii) Pars fibrosa (DNA + RNA).

iii) Perinucleolar chromatin.

iv) Intranucleolar chromatin (DNA).

v) Matrix (RNA).

4. Nuclear sap:

Colloidal solution.

THE EPITHELIAL TISSUE

The epithelial tissue is formed of

closely aggregated cells with a very

little intercellular substance.

It forms either membranes or glands.

I- Epithelial membranes:

General features:

• Line body cavities.

• Cover body surfaces.

• Originate from the 3 germ layers.

• Lack blood vessels.

• Have terminal sensory nerves.

• Have a basement membrane.

• Divide mitotically.

Types:

A) Simple epithelium:

One layer.

i) Simple squamous epith.:

Peritonium - pleura-blood vessels

(Figs. 25& 26).

Fig. 25: Simple squamous epithelium (surface

view). Endothelium of vein (A) and artery (B).

Fig. 26: Simple squamous epithelium, A:

(Lateral view, arrowheads), Blood capillary

(Azan stain). B: (Surface view), Buccal

mucosa.

ii) Simple cuboidal epith.:Thyroid

ovary (Fig. 27).

Fig. 27: Simple cuboidal epithelium into a

collecting tubule (arrowheads, Kidney). A:

(Azan stain), B: H & E.



iii) Simple columnar epith.:

• Nonciliated: Stomach - intestine.

• Ciliated: Oviduct (Fig. 28).

Fig. 28: Simple columnar epithelium. A: H &

E. B: (Diagrammatic illustration) notice the

kinocilia (arrows).

iv) Pseudostratified columnar epith.:

Tall cells + short cells.

• Non ciliated: uterus.

• Ciliated:

a- Kinocilia: trachea (Fig. 29).

b- Stereocilia: epididymis.

Fig. 29: Pseudostratified columnar ciliated

epithelium with goblet cells (Trachea,

arrowheads): A: Diagram, B: (Azan stain). C

(Diagrammatic illustration) showing steriocilia

(arrows).

B) Stratified epithelium:

Several layers.

i) Stratified squamous epithelium:

• Basal: Columnar cells.

• Middle: Polyhedral, cells.

• Superficial: Flat cells.

Types:

Non cornified: Oesophagus

(Fig.30A).

Cornified: Hard palate (Fig.30B&

C).



Fig. 30: A) Stratified squamous non-cornified

epithelium. B) Stratified squamous cornified

epithelium. C) Stratified squamous cornified

epithelium (Azan stain). 1. Columnar or

cuboidal cells. 2. Polyhedral cells. 3. Squamous

cells. 4. Horny layer (keratin).

ii) Stratified columnar epithelium:

• Basal: Columnar cells.

Middle: Polyhedral cells.

• Superficial: Columnar cells.

• Large ducts of salivary glands (Fig.

31).

Fig. 31: Stratified columnar epithelium

(Azan stain).

iii) Stratified cuboidal epithelium:

Two layers of cuboidal cells (Fig.

32).

• Ducts of the mammary glands.

Fig. 32: Stratified cuboidal epithelium (H & E).

iv) Transitional epithelium:

• Basal: Cuboidal cells (Fig. 33a).

• Middle: Pear shaped cells (Fig.

33b) .

• Superficial: dome-shaped cells (Fig.

33c).

• Ureter - Urinary bladder (empty)

In case of full bladder:

• Basal : Cuboidal.

• Superficial: flat.

Fig. 33: Transitional epithelium (Azan stain).



II- Glands:

1. Endocrine glands: Ductless-secrete

hormones.

2. Exocrine glands:

i) Unicellular glands: Goblet cells

(intestine).

ii)Multicellular glands: Duct(s) +

End-piece(s).

Classification:

According to:

1. The shape:

i) Simple glands: Single duct.

• S. tubular (sweat glands, Fig. 34a).

S. alveolar (sebaceous glands, Fig.

34b).

• S. tubulo-alveolar (small salivary

glands, Fig. 34c).

ii) Branched glands: Branched end-

pieces.

• B. tubular (gastric glands, Fig. 34d).

• B. alveolar (tarsal glands, Fig. 34e).

B. tubulo-alveolar (prostate, Fig.

34f ).

iii) Compound glands: Branched

ducts.

• C. tubular (liver, kidney, Fig. 34g).

C. alveolar (mammary gland, Fig.

34h).

C. tubulo alveolar (pancreas, Fig.

34i ).

Fig. 34: Classification of the multicellular

glands according to the shape: a- Simple tubular

gland. b- Simple alveolar gland. c- Simple

tubulo-alveolar gland.d- Branched tubular

gland. e- Branched alveolar gland. f- Branched

tubulo-alveolar gland.g- Compound tubular

gland. h- Compound alveolar gland. i-

Compound tubulo-alveolar gland.

2. The nature of secretion:

i) Serous end-pieces:

• Pyramidal cells.

• Rounded nucleus.

• Narrow lumen.

• Pancreas – parotid (Fig. 7& 35).



Fig. 35: Serous gland, H & E.

ii) Mucous end - pieces:

• Cuboidal cells.

• Flat nucleus.

• Wide lumen.

• Palatine salivary gland (Fig. 36).

Fig. 36: Mucous gland (Trichrome stain).

iii) Mixed end-pieces:

• Crecents.

• Cell by cell.

• Acinus by acinus.

Mandibular salivary glands (Fig.

37A& B).

Fig. 37: A: Mixed gland (Trichrome stain). B:

Mixed end-piece, H & E.

3. The mode of secretion:

i) Merocrine glands:

• No loss of cytoplasm.

• Pancreas.

ii) Apocrine glands:

• Loss of the cell apex.

• Mammary gland.

iii) Holocrine glands:

• Destruction of the whole cell.

• Sebaceous gland (Fig. 38).



Fig. 38: Sebaceous gland, H & E.

Modifications of the epithelial cells

to correlate certain functions:

I- Modifications in cell surfaces:

A) Basal border:

a- Basal infoldings: Long

invaginations of the basal plasma

membrane.

Found into: ion-transport cells

e.g. the proximal convoluted tubules

of the kidney (Fig. 39).

b- Hemidesmosomes: These

structures take the form of half a

desmosome on the epithelial cell

plasmalemma. They probably serve

to bind the epithelial cell to the

subjacent basal lamina. Found into

epidermis.

Fig. 39: Ion - transport cell: Showed 1 -

Invaginations of the basal cell membrane. 2-

Basement membrane. 3- Mitochondria. 4 -

Invaginations of the lateral cell surface. 5-

Apical microvilli.

The basal border rests on a basement

membrane which consists of :

1. Basal lamina: granular

(glycoprotein).

2. Middle layer: amorphus (protein +

polysacch.).

3. Reticular layer: reticular fibers.

B) Apical border:

1. Striated border = Microvilli (Fig.

39).

2. Cilia:

a) Stereocilia (Fig. 29).

b) Kinocilia (Fig. 28& 40):

Peripherally: 9 double microtubules.

• Centrally: 1 double microtubule.



Fig. 40: The cilium (Kinocilium): a - The shaft;

1. Cell membrane. 2. Two central microtubules.

3. Central sheath. 4. Nine double peripheral

microtubules. 5. 2-3 protofilaments. 6. Nexins.

7. Radial spokes. b- The base: 8. Nine triple

peripheral microtubules. 9. Basal body.

3. Flagella:

They are similar in structure to

cilia but are much longer and single.

They are found into spermatozoa.

C) Lateral border:

1. Zonula occludens (intestine) , Fig.

41.

2. Zonula adherens (intestine), Fig.

41.

3. Desmosome (intestine + skin) , Fig.

41& 42.

1+2+3 = Junctional complex

(intestine).

4. Gap junction (Heart - intestine),

Fig. 41& 43.

5. Interdigitated membranes

(Kidney).

Fig. 41: Specialization of the lateral border

Fig. 42: Macula adherentes (Desmosome):A:

1- Intercellular space. 2 - Electrons obaque

central line.3- Dense attachment plate. 4-

Microfilaments (tonofilaments). 5-

Transemembrane linker. B: (arrow).



Fig. 43: Gap junction: 1 - Parallel hollow tube-

like protein structure.

II- Modifications in cell

constituents:

1. Protein - secreting cell = Abundant

rER.

Found into: Pancreas.

2. Glyco-protein-secreting cell:

Abundant mucigen granules.

Found into: Goblet cell

3. Steroid-secreting cell = Abundant

sER.

Found into: Testis.

4. Iron-transport cell = Abundant

mitochondria (Fig. 39).

Found into: Kidney.

5. Neuro-epithelial cell = Abundant

microvilli (Fig. 44).

Found into: Taste buds.

Fig. 44: Taste bud: 1 - Neuroepithelial cell.

(Light cell). 2 - Nerve ending. 3 - Microvilli. 4 -

Basal cells. 5 - Supporting cells. (Dark cell).

6. Epithelial reticular cell = Abundant

cytofilaments (Fig. 45).

Found into: Thymus.

Fig. 45: Epithelial reticular cell: 1- Cytoplasmic

process. 2- Nucleus. 3- Cytofilaments. 4-

Desmosome.



6. Myoepithelial cell = Abundant myofilaments (Fig. 46).

Found into:

Salivary glands - mammary gland.

Fig. 46: Myoepithelial cell "Basket cell": 1 - Salivary adenomere. 2- Myoepithelial cell.

3- Cytoplasmic processes. 4- Nucleus. 5- Myofilaments. 6 - Cell organelles.



THE CONNECTIVE TISSUE

The connective tissue is formed of

widely scattered cells with plentiful

intercellular substance.

Structure:

The connective tissue consists of:

A) The cellular elements.

B) The connective tissue fibers.

C) The matrix or ground intercellular

substance.

A) The cellular elements:

1.Undifferentiated mesenchymal

cells (UMC):

• Small banching cells (Fig. 47).

• Large pale nucleus.

Divide and differentiate into other

cell types.

Found into: The embryo around the

blood capillaries.

2. Fibroblast cells:

Two types:

a) Young active cells (Fibroblasts):

Large cells with cytoplasmic

processes (Fig. 48A).

• Large pale nucleus.

• Basophilic cytoplasm (rich in rER).

b) Mature inactive cells (Fibrocytes):

• Smaller, spindle-shaped (Fig. 48B).

• Small dark nucleus.

• Acidophilic cytoplasm.

Fig. 47: Undifferentiated mesenchymal cell. 1.

Cytoplasmic processes. 2. Mitochondria. 3.

Rough endoplasmic reticulum. 4. Golgi

apparatus.

Fig. 48: A- Fibroblast: B - Fibrocyte: 1-

Cytoplasmic processes. 2- Nucleus. 3- Rough

endoplasmic reticulum. 4- Golgi apparatus.

3. Macrophages:

Oval, rounded, branched cells (Fig.

49).

• Small, kidney-shaped nucleus.



Many lysosomes - Many

mitochondria - Well developed Golgi

apparatus.

Fig. 49: Macrophage: 1. Cytoplasmic

processes. 2. Nucleus. 3. Golgi apparatus. 4.

Lysosome. 5. Rough endoplasmic reticulum. 6.

Free ribosomes. 7. Mitochondria.

4. Plasma cells:

• Large, round or oval cells (Fig. 50).

Eccentric, rounded nucleus (cart -

wheel or clock face chromatin).

• Highly basophilic cytoplasm (rER).

Well developed Golgi apparatus

(Antibodies).

Fig. 50: Plasma cell: 1. Basophilic cytoplasm.

2. Juxtanuclear pale area. 3. Nucleus. 4. Rough

endoplasmic reticulum. 5. Golgi apparatus. 6.

Centrioles. 7. Mitochondria.

5. Mast cells:

• Large, oval, rounded or irregular

cells (Fig. 51).

• Central nucleus.

Metachromatic cytoplasmic

granules (Heparin - histamin -

serotonin) - Toluidine blue Red.

Fig. 51: Mast cell: 1. Cytoplasmic processes. 2.

Coarse cytoplasmic granule. 3. Mitochondria.

4. Golgi apparatus.

6. White fat cells: "Unilocular

adipocytes".

Large, oval or rounded cells (Fig.

52).

• Flat, peripheral nucleus.

• Cytoplasm is occupied by a large

fat globule (Signet - ring).



Fig. 52: White fat cell: (Unilocular adipocyte).

1. Cytoplasm (thin film). 2. Mitochondria. 3.

Fat globule. 4. Nucleus.

7. Brown fat cells: "Multilocular

adipocytes"

• Smaller, polygonal cells.

Spherical eccentric nucleus.

Cytoplasm contains multiple small

fat droplets and many cytochrome -

rich mitochondria (Fig. 53).

Fig. 53: Brown fat cell: (Multilocular

adipocyte). 1. Small lipid droplets. 2. Nucleus.

3. Nucleoli. 4. Cytoplasm (abundant). 5.

Mitochondria.

8. Pigment cells:

• Large, branched cells (Fig. 54).

• Small, rounded nucleus.

Cytoplasm contains melanin

pigments.

Fig. 54: Pigment cell.

9. Eosinophil leukocytes:

• Rounded or oval cells (Fig. 55).

• Nucleus is bilobed.

Cytoplasm contains coarse

acidophilic granules.

E/M:

The cytoplasmic granules consist of:

• Matrix.

• Equatorial band.

Fig. 55: Eosinophil leukocyte, A: 1 - Nucleus.

2 - rER (Few). 3 - Free ribosomes. 4 -

Mitochondria (small). 5- Cytoplasmic granules.

6 - Equatorial band. B: Blood film.



B) The connective tissue fibers:

1. White collagenous fibers:

• Run in wavy bundles.

The bundles branch but the fibers

do not branch.

• Stain blue with Mallory's stain.

• Found into tendons (Fig. 56).

Fig. 56: A: The collagenous fibrils showing

periodicity of light and dark bands. B: Tendon

(L.S.) H&E.

2. Yellow elastic fibers:

• Thin-long (Fig. 57).

• Branch and form networks.

• Stain brown with orcein or deep

blue with Resorcin-fuchsin.

• Found into lung - aorta.

Fig. 57: Elastic fibers into the wall of aorta,

orcein stain.

3. Reticular fibers: (Argyrophilic

fibers).

• Very thin.

• Branch and form fine networks.

• Stain black with Ag N03 (Fig. 58).

• Found into spleen - liver.

Fig. 58: Reticular fibers within the hepatic

lobule (silver impregnation).

C) The matrix:

Consists of:

1. Amorphous viscid (jelly - like)

substance (mucopolysacch.).

2. Tissue fluid.

Types of connective tissue:

I- Connective tissue proper:

1. Loose connective tissue:

• All c.t. cells (Fig. 59).

• All c.t. fibers.

• Matrix.

Found into: subcutaneous c.t.



Fig. 59: Loose connective tissue.1. Fibroblasts.

2. Fibrocytes. 3. Fat cells. 4. Pericytes.5.

Macrophages. 6. Mast cells. 7. Lymphocytes. 8.

Plasma cells. 9. Eosinophilic leukocyte.10.

Monocyte. 11. Reticular fibers. 12. Collagenous

fibers. 13. Elastic fibers. 14. Lymphatic vessels.

15. Blood vessels. 16. Nerve fibers.

2. Dense fibrous connective tissue:

A) Dense white fibrous c.t.:

= Dense regular white fibrous c.t.:

Collagenous fibers (Dense parallel

bundles), Fig. 60.

• Fibroblasts (compressed).

• Matrix - poor in blood vessels.

Found into: Tendons.

Fig. 60: Tendon (L. S.), Picrocarmine stain.

B) Dense elastic connective tissue:

= Dense regular elastic c.t.:

• Elastic fibers (parallel), Fig. 57.

• Few collagenous fibers.

• Fibroblasts.

Found into: Ligamentum nuchae.

3. Adipose connective tissue:

A) White adipose tissue:

• White fat cells - (lobules - lobes).

• Reticular fibers.

• Numerous blood vessels.

Found into: hump of camel -tail of

sheep.

Fig. 61: White adipose c. t. A: 1. Fat cells

(signet ring). 2. Reticular fibers. 3. C. t. septa.

4. Blood vessel. B: Oil red O.

B) Brown adipose tissue:

• Brown fat cells, Fig. 62.

• Reticular fibers.

• Many blood vessels.

Found into: rodents.



Fig. 62: Brown adipose tissue. 1. Nucleus. 2.

Lipid droplets.

4. Reticular connective tissue:

• Reticular fibers, Fig. 63.

• Reticular cells (similar to UMC).

Found into: spleen - liver.

Fig. 63: Reticular connective tissue 1. Reticular

fibers. 2. Reticular cells.

5. Embryonic connective tissue:

A) Mesenchymal c.t.:

• UMC, Fig. 64.

• Amorphous ground substance.

• Few fibroblasts.

Found into: the embryo.

Fig. 64: Mesenchymal connective tissue, Azan

stain.

B) Mucous c.t.:

• Fibroblasts (Fig. 65, arrowheads).

• Amorphous ground substance.

• Fine collagenous fibers.

Found into: umbilical cord.

Fig. 65: Mucous c. t. fibroblasts (arrowheads),

H & E.

II- Cartilage:

Formed of:

A) Cartilage cells:

1. Chondroblasts:

• Flat.

• Basophilic cytoplasm.

• Oval nucleus.

• Present into the perichondrium.

2. Chondrocytes:

• Oval - rounded - semicircular.



• Cytoplasm is granular with Golgi

apparatus + rER + Glycogen.

• Nucleus is rounded - vesicular.

Located in lacunae surrounded by

capsules.

May be found in groups (2 - 4 - 8

cells) = isogenous groups.

• Produce collagen and elastic fibers.

B) Intercellular substance:

a) Collagenous or elastic fibers.

b) Matrix = glycoprotein.

Perichondrium:

a) Outer fibrous layer.

b) Inner chondrogenic layer

(chondroblasts).

Types of cartilage:

1. Hyaline cartilage:

Matrix: basophilic (chondroitin

sulphate), Fig. 66.

• Collagenous fibers (few).

Found into: larynx-trachea.

2. Elastic fibrocartilage:

• Network of elastic fibers (Fig. 67).

Found into: Ear pinna - epiglottis.

Fig. 66, A: Hyaline cartilage. 1. Perichondrium.

2. Chondrocyte (single). 3. Chondrocytes

(group). Inset: 1. Chondrocyte. 2. Lacuna. 3.

Capsule. 4. Matrix. B: Hyaline cartilage,

Trichrome stain.

Fig. 67: Elastic cartilage. Epiglottis. 1.

Perichondrium. 2. Chondrocyte single. 3.

Chondrocytes (isogenous group). 4. Elastic

fibers. B: Elastic cartilage, Resorcin-fuchsin

stain.



3. White fibrocartilage:

Small groups of chrondrocytes

arranged into rows (Fig. 68).

• Bundles of Collagenous fibers.

• No perichondrium.

Found into: Intervertebral discs.

Fig: 68: White fibrocartilage. A: Intervertebral

disc. B: Light microscopic magnification. 1-

Chondrocytes. 2- Collagenous fibers. C: White

fibrocartilage, H&E

III- Bone:

Formed of

A) Bone cells:

1. Osteogenic cells:

• Similar to UMC.

2. Osteoblasts:

• Small – branched cells.

• Nucleus is oval, pale, eccentric.

• Basophilic cytoplasm.

Found into periosteum and

endosteum (Fig.69).

Fig. 69: Osteoblasts. 1. Nucleus. 2. Cytoplasm.

3. Cytoplasmic processes 

3. Osteocytes:

• Almond – shape cells (Fig. 70).

• Nucleus is elongated.

• Basophilic cytoplasm.

• Cytoplasmic processes.

• Located within lacunae - canaliculi.

• Produce bone matrix.

Fig. 70: Osteocytes. 1. Nucleus.2. Cytoplasm.

3. Lacuna. 4. Canaliculus.5. Cytoplasmic

processes.



4. Osteoclasts:

• Large - branched motile cells.

Multinucleated (5 - 50 nucleus),

Fig.71.

Cytoplasm is acidophilic

(lysosomes).

Found within grooves = Howship's

lacunae.

• Brush border = comb - shaped.

• Produce proteolytic enzymes.

Fig. 71: A: Osteoclast. 1. Microvillous

cytoplasmic processes. 2. Howship's lacunae. 3.

Belt of cytoplasm free of organelles 4.

Microvillous processes. Nuclei (arrows) B:

Osteoclast, H&E.

B) Matrix:

= Bone lamellae

Consist of collagenous fibers and

calcium salts.

Types of bones:

1. Cancellous bone (spongy bone):

Branched bone trabeculae = formed

of bony lamellae containing

osteocytes and are covered by

osteoblasts (Fig.72).

Found into: - Head of long bones.

- Ribs.

- Sternum.

Fig. 72: Cancellous bone (Spongy bone).

2. Compact bone:

Consists of:

a) Haversian system(s) = Osteon(s):

• Haversian canal (Bl. ves.).

Haversian lamellae (concentrically

arranged).

Osteocytes (concentrically

arranged).

b) Interstitial lamellae (non-

Haversian system).

c) Outer circumfrential lamellae.

d) Inner circumfrential lamellae.



Found into: Shaft of long bones ,

Fig.7 3.

Volkmann's canals:

Transverse canals between the

Haversian canals.

Periosteum and endosteum:

Consists of:

a) Outer fibrous layer.

b) Inner vascular layer.

(containing the osteoblast cells).

Fig. 73: Compact bone. 1. Periosteum. 2. Outer

circumferential lamellae. 3. Haversian system

(osteon). 4. Interstitial lamellae. 5. Medullary

cavity (marrow cavity). 6. Inner circumferential

lamellae. 7. Concentric bone lamellae. 8.

Haversian canal. 9. Osteocytes. 10. Volkmann's

canals

Ossification (development of bone):

1- Intramembranous ossification:

Occur within a membrane of

mesenchymal c.t. which is converted

into bone.

e.g. Flat bone of the skull.

2- Intracartilagenous ossification:

In this method cartilage is replaced

by bone.

e.g. epiphyseal plate of cartilage.

Stages: Fig. 74

I- Resting cartilage: A piece of

hyaline cartilage.

II- Zone of Proliferation: The

chondrocytes are increase in number

and arrange themselves into rows.

III- Zone of hypertrophy or

maturation: The chondrocytes

increase in size, accumulate glycogen

and become rich in phosphatase.

The lacuna also widen and become

separated by thin bars of matrix.

IV- Stage of calcification:

The chondrocytes deposit calcium

salts around themselves, die and

degenerate.

The lacunae open on each other

forming longitudinal canals.



V- Stage of ossification (stage of

invasion).

The osteoblasts deposit bone lamellae

on the calcified matrix.

VI- Stage of spongy bone.

Fig. 74: A& B. Intracartilagenous ossification; I- Resting cartilage. II- Zone of proliferation.

Ill- Zone of hypertrophy. IV- Stage of calcification. V- Stage of ossification. B: Azan stain.



BLOOD

Consists of:

65% blood plasma.

35% formed elements.

Formed elements:

I- Erythrocytes (Red blood

corpuscles):

A) Mammalian erythrocytes:

Non-nucleated, rounded, biconcave

discs (Fig.75A.1 & B).

• Contain haemoglobin.

• Largest in dogs (7 mic.).

• Smallest in sheep (4 mic.).

In camel and llama (Tylopoda):

Elliptical, non -nucleated

(Fig.75A.2).

B) Avian erythrocytes:

Oval, biconvex, nucleated

(Fig.75A.3 & C).

C) Reptiles, Fish, Frog

erythrocytes:

• Ovoid, biconvex, nucleated.

II- Leukocytes (white blood cells):

1. Granular leukocytes:

"Granulocytes"

a) Neutrophil leukocytes:

= Polymorphonuclear leukocytes.

• Nucleus: 3-5 segments (Fig. 76).

• Neutrophilic cytoplasmic granules.

E/M:

• Large granules = lysosomes.

Small granules = bacterial

substance.

Fig. 75: Red blood corpuscles: A.1& B-

Mammals. A.2- Tylopoda (camel and llama).

A.3& C- Birds.

Fig. 76: Neutrophil or polymorphonuclear

leukocyte. A: 1- Nucleus. 2- Large azurophilic

granules. 3- Small specific granules. 4-

Cytoplasmic arms. 5- Bacterium. 6- Phagocytic

vacuole. 7- Specific granule joining a

phagocytic vacuole.8-Pseudopodia. B: Blood

Film.



b) Eosinophil leukocytes:

See page 20.

c) Basophil leukocytes:

• Nucleus: bilobed (Fig. 77).

Coarse basophilic cytoplasmic

granules.

E/M:

The cytoplasmic granules are

electron dense.

Fig. 77: Basophil leukocyte A: 1. Nucleus. 2.

Electron dense granules. 3. Cytoplasmic

organelles (Few). B: Blood film

2. Agranular leukocytes:

"Agranulocytes"

A) Lymphocytes:

a) Large lymphocytes: "Active"

• Large cells.

• Large indented nucleus.

• Abundant cytoplasm with numerous

ribosomes.

b) Small lymphocytes: "Inactive"

• Small rounded cells.

Large rounded deeply stained

nucleus (Fig. 78).

Few cytoplasm with few

azurophilic granules (lysosomes).

Fig. 78: Lymphocyte (Activated). A: 1-

Nucleus. 2- Mitochondria (Few). 3- Free

ribosomes. 4- rER (Few). 5- Centrioles. 6-

Azurophilic granules (lysosomes). B: Blood

film.

B) Monocytes

• Nucleus: Kidney – shaped (Fig. 79).

• Cytoplasm: Abundant - greyish blue

(numerous lysosomes).

• Highly phagocytic.



Fig. 79: Monocyte. A: 1- Nucleus. 2-

Centrioles. 3- Golgi apparatus. 4- Lysosomes.

5- Mitochondria. 6- Ribosomes. 7- rER. B:

Blood film.

Ill- Blood platelets:

"Thrombocytes"

In mammals:

Non-nucleated cytoplasmic

fragments (Fig. 80).

E/M:

Contain:

Alpha granules = Azurophilic

granules.

• Beta granules = Mitochondria.

• Delta granules = Vacuoles.

• Marginal zone = Microtubules.

In birds:

• They are nucleated.

• Simulate R. B. Cs.

Develop from Megakaryocytes

(Large cell with lobulated nucleus).

Fig. 80: Blood platelet. A: 1 - Mitochondria. 2-

Vacuoles. 3- Azurophilic granules 4-

Microtubules. B: Blood film.



THE MUSCULAR TISSUE

The muscular tissue performs

mechanical work by contraction.

1. The smooth muscle:

Narrow, elongated and tapering

cells (Fig. 81).

• 20 - 500 μm X 5 μm.

• Sarcolemma: is not clear.

Nucleus: Single, oval, central,

spiral chromatin.

• Sarcoplasm: - Myofibrils.

- Glycogen.

- Pigments (myoglobin).

• C.S.: Large nucleated and small

non-nucleated cytoplasmic portions.

Found into:

- Small intestine.

- Uterus.

- Blood vessels.

- Ureter.

- U. bladder.

Fig. 81: Smooth muscle fibers. A, Upper:

Longitudinal section. Middle: Longitudinal

section (left). Cross section (right). Lower: L.S. in

smooth muscle fiber: 1. Broad nucleus-containing

portion. 2. Myofibrils. B, Smooth muscle fibers

with H & E. Upper: L. S. Lower: C. S.

2. The skeletal muscle:

• Regular cylindrical cells (Fig. 82).

• 1 -300 mm X 10-100 μm.

• Sarcolemma: is clear.

Nucleus: multiple, flat, and

peripheral.

• Sarcoplasm:

A) Cell organelles:

• Myofibrils.

• Sarcoplasmic reticulum = sER (SR)

• Mitochondria (2%).

• Golgi apparatus.

• Ribosomes.



B) Cell inclusions:

• Glycogen.

• Pigments (Myoglobin).

The muscle fiber is transversely

striated (clear).

Fig. 82: Skeletal muscle fibers. A: H & E.

Upper: L. S. Middle: C. S. Lower: L. S. B:

Azan stain. C: Types of skeletal muscle

fibers. (Stained for myosin ATPase) 1. Red

muscle fibers. 2. White muscle fibers. 3.

Intermediate muscle fibers.

Myofibrils:

L/M: Are transversely striated (Fig.

83):

1. A- band: Dark band

bisected by H - band.

2. I - band: Light band

bisected by Z - line

E/M: Each myofibril is composed of:

1. Thick myofilaments (Myosin)

2. Thin myofilaments (Actin)

• The segment between two successive

Z lines = Sarcomere.

Sarcomere = A - band + ½ I- band

on either side.

C.S.: The muscle fiber is polygonal in

shape with peripheral, flat nuclei.

Fig. 83: A: Banding pattern of skeletal muscle B:

Relationship of cross banding to the arrangement

of thin and thick myofilaments C: Skeletal

muscle fibers (L. S.), Notice: I- Band, Z- Line, A-

Band.

Types of skeletal muscle fibers:

1. Red muscle fibers: small - rich

sarcoplasm - poor in glycogen (Fig.

82C.1).



2. White muscle fibers: large - poor

sarcoplasm - rich in glycogen (Fig.

82C.2).

3. Intermediate muscle fibers (Fig.

83C.3).

3. The cardiac muscle:

Elongated branching cells (Fig.

84a ).

• Form networks (syncytium).

• 50-120X20 μm.

• Sarcolemma is thin.

• Nucleus: single, oval, central.

• Sarcoplasm: abundant.

• Striation: less clear.

Glycogen and lipofuscin:

numerous.

Sarcoplasmic reticulum: less

developed than in skeletal muscle.

• Mitochondria: 40%.

• The muscle fibers are joined to

each other by intercalated discs

(step - wise pattern), Fig. 84B& C.

C.S.: The muscle fibers are

polygonal in shape with or without

central rounded nucleus (Fig. 84b).

Fig. 84: Cardiac Muscle. A: a, L.S. b, C.S. of the

cardiac muscle: 1-Cardiac muscle fiber. 2-

Nucleus. 3- Endomysium.B: Intercalated disc. C:

Cardiac muscle (L.S.). Notice the intercalated

discs (Arrows).



THE NERVOUS TISSUE

The nervous tissue is adapted to

receive stimuli from the outside, to

transform them to nervous

impulses, and to convey these

stimuli to other parts of the body.

The nervous tissue consists of:

Nerve cells - Nerve fibers -

Neuroglia.

I- Nerve cells (Neurons):

Structure:

A) The cell body:

Shape: Rounded - oval pear

shaped pyramidal irregular (Fig.

85).

Size: Large Small.

a) Nucleus : Large - spherical - pale

- central - 1 to 2 nucleoli.

b) Ctyoplasm:

Organelles:

rER = Nissl's granules.

Golgi apparatus: surrounds the

nucleus.

• Mitochondria.

• Neurofibrils.

No centrioles (do not divide)

Inclusions:

Pigments.

• Secretory granules.

B) The cell processes:

One or more

Short

Thick

Divide

rER

One

Long

Thin

Does not divide

No rER

Fig. 85: The nerve cell. A: 1. Cell body. 2.

Dendrites. 3. Axon. B: The nerve cell. 1. Nucleus.

2. Golgi apparatus. 3. Nissl's granules. 4.

Mitochondria. 5. Neurofibrils. C: Multipolar

neuron, Luxol Fast blue.

The nerve cells are found into:

Gray matter of the brain and spinal

cord.

• Retina.

• Ear.

• Olfactory region.



Types of nerve cells:

1. Unipolar neurons : Embryo (Fig.

86A)

2. Pseudo - unipolar neurons: Spinal

ganglia (Fig. 86B)

3. Bipolar neurons: Retina (Fig.

86C) .

4. Multipolar neurons: Gray matter

(Fig. 86D).

Fig. 86: Types of nerve cells.

II- Nerve fibers:

A nerve fiber = Axon + its sheathes

(Fig. 87)

1. Axon:

• Axolemma.

Axoplasm: Mitochondria.

Neurofilaments.

2. Sheathes:

A) Myelin sheath:

• Lipid.

• Segments.

• Nodes of Ranvier.

B) Neurolemma: Schwann's cells:

Flat - one for each segment.

Type of nerve fibers:

1. Myelinated with neurolemma :

Spinal nerve.

2. Myelinated without neurolemma:

Optic nerve.

3. Unmyelinated with neurolemma:

Sympathetic nerve.

4. Unmyelinated without neurolemma:

Olfactory nerve.

Fig. 87: A, Myelinated nerve fiber with

neurolemma: 1- Axon. 2- Axolemma. 3- Myelin

sheath. 4- neurolemma. 5- Endoneurim. 6- Node

of Ranvier. 7 - Clefts of Schmidt - Lanterman. 8 -

Nucleus of Schwann cell. 9 - Mitochondria. 10-

Neurokeratin network. 11- Neurofilaments. B,

Myelinated nerve fibers (L. S.), Silver

impregnation.



Synapse (s):

- The connection between:

• neuron neuron.

• neuron muscle.

• neuron gland.

- Conduction of nerve impulses

occurs in one direction only.

- There is no actual continuity of

substance between the cells.

- Synapses are electrochemical

transmission sites.

Structure:

- Cell processes (e.g. axon) provide

synaptic end-bulb (boutons

terminaux), Fig. 88.

- The synaptic end-bulb contains

synaptic vesicles which contain the

Neuro-transmitter substance which

passes through

- The presynaptic membrane to

- The synaptic cleft to form

- The postsynaptic components

which pass through

- The post synaptic membrane.

Types: (Fig. 89).

1- Somato somatic.

2- Dendro dendretic.

3- Axo axonic.

4- Axo dendretic.

5- Dendro somatic.

6- Axo somatic.

Fig. 88: A synapse: 1- Nerve cell process

(presynaptic component). 2- Synaptic end - bulb.

3- Mitochondria. 4- Synaptic vesicles. 5-

Presynaptic membrane. 6- Synaptic cleft. 7-

Postsynaptic component of nerve cell process, 8-

Postsynaptic membrane.

Fig. 89: Types of synaptic patterns: 1- Somato-

somatic synapse. 2-Dendro- dendritic synapse. 3

- Axo- axonic synapse. 4- Axo- dendritic synapse.

5- Dentro- somatic synapse. 6- Axo- somatic

synapse.

Nerve trunk:

Epineurium: surrounds the whole

nerve (Fig. 90).



Perineurium: surrounds the nerve

bundle (Fig.91).

• Endoneurium: surrounds the nerve

fiber.

Fig. 90: Nerve trunk (Spinal nerve). A)

Whole nerve trunk. 1. Nerve bundle. 2. Nerve

fibers. 3. Perineurium. 4. Endoneurium. 5.

Perineurium. 6. Epineurium. 7. Blood vessels.

8. Adipose tissue. B) L.S. 1. Nerve fiber. 2.

Axon. 3. Myelin sheath. 4. Node of Ranvier.

5. Endoneurium. c) C.S. 1. Perineurium. 2.

Epineurium. 3. Nerve fibers. 4. Endoneurium.

5. Blood capillaries. 6. Axon.7. Myelin

sheath.

Fig. 91: Nerve bundle (C. S.), Silver

impregnation. 1. Axon. 2. Myelin sheath.

Ganglia:

A ganglion is a collection of nerve

cells and nerve fibers.

* Small

*Multipolar

*Singly

scattered

*Surrounded by

satellites in an

irregular

manner.

*Unmyelinated

with neurolemma

Fig. 92

*Large

*Pseudounipolar

*In groups

*Surrounded by

satellites in a

regular manner.

*Myelinated with

neurolemma.

Fig. 93

Fig.92: Section from a sympathetic ganglion of

the horse, showing the multipolar neurons (a)

surrounded by a less apparent layer of satellites

(b). Notice the sympathetic unmyelinated nerve

fibers (c).



Fig. 93. A: Section from the spinal ganglion

of a horse. a) Nerve cell (in groups). b) Single

layer of satellite cells or capsule cells

surrounding the nerve cells. B: Group of

pseudounipolar neurons within a spinal

ganglion. C: Pseudounipolar neurons

surrounded by satellite cells (arrowheads)

within a spinal ganglion.

III- NeurogIia:

Fig. 94

Connective tissue of CNS

A- Neuroglia proper :

1-Astrocytes:

a- Protoplasmic astrocytes (Fig.

94A & 95):

• Large cells.

Numerous, thick, short and

branching cytoplasmic processes.

These processes form perivascular

feet.

Numerous cytoplasmic granules

(gliosomes).

• Central, large, rounded nucleus.

• Found into the gray matter.

Fig. 94: Neuroglia. A- Protoplasmic astrocyte. B-

Fibrous astrocyte. C- Oligodendrocyte. D-

Microglia.

Fig. 95: Protoplasmic astrocytes, Silver

impregnation.

b- Fibrous astrocytes: (Fig. 94B& 96)

• Large cells.

The cytoplasmic processes are long,

thin, straight and less branched.

These processes form perivascular

feet.



• The cytoplasm is not granular.

• Central,large ,rounded nucleus.

• Found into the white matter.

Fig.96: Fiberous astrocytes.

2- Oligodendrocytes:

• Small cells (Fig. 94C & 97).

The cytoplasmic processes are

few, short and less branched.

• Small, rounded dark nucleus.

• Found into both gray and white

matters.

Fig. 97: Oligodendrocytes.

3-Microglia

=Mesoglia=Microphage:

• Small cells.

• Spindle shaped.

The cytoplasmic processes are thin,

branched and arise from each of the

two poles of the cell (Fig. 94D & 98).

• Little thorns cover the cell and its

processes.

• Flat, oval, dark nucleus.

• Motile and phagocytic cells.

Fig. 98: Microglia cells, Hortega stain.

B- Other types of neuroglia:

a) Spongioblasts:

They are small cells with deeply

stained nucleus. They are capable of

differentiation into astrocytes and

oligodentrocytes.

b) Ependymal cells:

They are simple columnar ciliated

cells, which line the central canal of

the spinal cord.

c) Capsule (or satellite) cells:

They surround the neurons of the

ganglia (Fig. 93C).

d) Cells of Schwann:

They surround the peripheral nerve

fibers (axons), Fig. 87A.



References

Ambrose, E. J. and Easty, D. M. (1979): Cell Biology. Second edition. The English

Language Book Society and Nelson. Great Britain.

Banks, W. J. (1993): Applied Veterinary Histology. Third edition, Mosby Year book. Inc. St.

Louis. Baltimore-Boston-Chicago-London-Philadelphia-Sydney-Toronto.

Bradbury, S. (1977): Hewer's textbook of histology for medical students. Ninth edition. The

English Language Book Society and William Heinemann medical books LTD. London.

Copenhaver, W. M.; Kelly, D. E. and Wood, R. L. (1978): Bailey´s Textbook of Histology.

Seventeenth edition. Williams & Wilkins company. Baltimore.

Cormack, D. H. (1987): Ham´s Histology. Ninth edition. J. B. Lippincott. Com.

Philadelphia.

Dellmann, H. D. (1993): Textbook of Veterinary Histology. Lea and Febiger. Philadelphia.

Fawcett, D. W. and Jensh, R. P. (1997): Concise Histology. Chapman & Hall. New York-

London-Tokyo.

Hammersen, F. (1975): Atlas der Histologie des Menschen. Urban an Schwarzeberg.

München-Berlin-Wien.

Junqueira, L. C.; Carneiro, J. and Kelley, R. O. (1998): Basic Histology. Ninth edition.

Appleton and Lang. Stamford. Connecticut.

Krstic, R. V. (1985): General histology of the Mammal. Springer-Verlag-Berlin.

Taher, E. Moussa, M. H. G. and Mosallam, E. (1983): Applied Histology of Domestic

Animals spotlights and drawings. Vo. I and II.

Trautmann, A. and Fiebiger, J. (1957): Fundamentals of the Histology of Domestic

Animals. Comstock publishing associates Ithaca. New York.

Weisss, L. and Greep, R. O. (1977): Histology. Fourth edition, Mc Graw-Hill Book

Company. New York.

Young, B. and Heath, J. W. (2000) : Wheater´s Functional Histology. Third edition.

Churchill livingstone. Edinburgh, London. New York. Philadelphia. St. Louis. Sydney.

Toronto.

ResearchGate has not been able to resolve any citations for this publication.

Applied Veterinary Histology

  • W J Banks

Banks, W. J. (1993): Applied Veterinary Histology. Third edition, Mosby Year book. Inc. St.

Hewer's textbook of histology for medical students. Ninth edition. The English Language Book Society and William Heinemann medical books LTD

  • S Bradbury

Bradbury, S. (1977): Hewer's textbook of histology for medical students. Ninth edition. The English Language Book Society and William Heinemann medical books LTD. London.

Bailey´s Textbook of Histology

  • W M Copenhaver
  • D E Kelly
  • R L Wood

Copenhaver, W. M.; Kelly, D. E. and Wood, R. L. (1978): Bailey´s Textbook of Histology. Seventeenth edition. Williams & Wilkins company. Baltimore.

Ham´s Histology. Ninth edition

  • D H Cormack

Cormack, D. H. (1987): Ham´s Histology. Ninth edition. J. B. Lippincott. Com.

Textbook of Veterinary Histology. Lea and Febiger

  • H D Dellmann

Dellmann, H. D. (1993): Textbook of Veterinary Histology. Lea and Febiger. Philadelphia.

Applied Histology of Domestic Animals spotlights and drawings. Vo. I and II

  • E Taher
  • M H G Moussa
  • E Mosallam

Taher, E. Moussa, M. H. G. and Mosallam, E. (1983): Applied Histology of Domestic Animals spotlights and drawings. Vo. I and II.

The English Language Book Society and Nelson

  • E J Ambrose
  • D M Easty

Ambrose, E. J. and Easty, D. M. (1979): Cell Biology. Second edition. The English Language Book Society and Nelson. Great Britain.

  • D H Cormack

Cormack, D. H. (1987): Ham´s Histology. Ninth edition. J. B. Lippincott. Com. Philadelphia.